


On the safety of the masonry arch. 
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A decalogue of false hypotheses 

In 1927 American engineer George Fillmore Swain published a noteworthy trea- 
tise of Stmctuml Engineering whose third volume, devoted to Str-esses, gruphical 
statics and musorzty, contains a whole chapter on the stone arch that deserves 
great attention. In the footnote at the beginning of the chapter Swain advises the 
reader with these words: 

Since the stone arch is an elastic arch, differing only in degree from a monolithic con- 

crete arch, it is impossible to distinguish sharply between the two. Before the student 

of structural engineering begins the study of elastic arches, it is desirable that he 

should study carefully this chapter on the stone arch, notwithstanding the fact that 

stone voussoir arches are now seldom built (Swain 1927,400). 

This warning is meaningful. Behind it we read an old attitude reflecting the 
distinction, also in terms of mechanical behaviour, between constrzlctions en 
nzqonnerie and constructions en charpente, a Leitmotiv of the technical litera- 
ture on the science des ing&nieur.s since its beginning. At the date of publication 
of Swain's treatise this attitude was "officially" banished from the studies of 
slructural engineering for a very obvious reason: it was unanimously accepted 
that stone, as well as steel or wood are characterized by the common properties 
of strength and elasticity, even though with different degree and specific features. 
Thus, the elastic methods used for steel and wood structures can be reasonably 
applied to stone and masonry constructions. 



This is exactly why Swain's words are of special interest. He was a distin- 
guished scholar of elasticity and strength of materials and as a young student, he 
had spent some time in Berlin studying theory of elastic systems under Emil 
Winkler, a pioneer in the field of the Elustizitiitslehre and one of the first authors 
to support the application of the elastic analysis to the stone arch (Winlder 1879). 
Despite this scientific training, Swain's view stands out from the chorus and 
probably represents the best methodological lesson from a professional elasti- 
cian. He writes: 

the elastic theory seems to be firmly intrenched in Amcrican engineering literature. 

Perhaps somc who use it do not realize its dcfccts and assumptions, and like it because 

it is complex and mathematical. It seems to be a curious characteristic of the human 

mind that it so oftcn prefers coinplexity to simplicity, and mistakes obscurity for pro- 

fundity . . . The writer believes in elastic methods, if they are necessary; not if they are 

unnecessary and if a simpler method is just as good (Swain 1927,421). 

This explicit position against any acritical application of the elastic theory to 
the masonry arch is accompanied by a decalogue listing the theoretical hypothe- 
ses assumed in the elastic analysis and, in parentheses, a brief remark on the real 
state of things: 

The elastic theory is often termed "exact". The assumptions made in it are the 
following. 

That the ends are rigid and do not rotate (this is untrue). 
That the span does not change at all (this is untrue). 
That the material is homogeneous (this is untruc). 
That the modulus of elasticity is constant, not changing with the 
pressure (this is untrue, though perhaps close). 
That the terms with r in the denominator may be neglected (this may be 
far from true). 
That the integrals may be replaced by summations (this is approximate). 
That the formulae for flexure are exact (this is untrue). 
The stresses due shrinkage are neglected. 
That the section is a rectangle (this is untrue; see Art. 18). 
That the loads may be determined accurately (this is untrue; both the 
loads and their distribution on the arch are quite uncertain). 

Possibly to some minds, not too mathematical, these facts may justify some of 
the conclusions in the present chapter (Swain 1927, 425). 
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These conclusions, and the "simpler method" that Swain refers to in the previous 
quotation, can be  summarized with the following arguments, based on a par- 
ticular use of  Winkler's theorem on the minimum of  the deformation work. As 
known, this theorem states that for an arch of  constant section, under vertical 
loads, the true line of  thrust is approximately the one which lies nearest the axis 
of  the arch ring, in the sense that the sum of  the squares of  the vertical deviations 
is a mininlunl. Starting from this theorem, Swain observes that if we can draw 
within the arch ring the lines of  minimum and maximum thrust, 

it is reasonably certain that there is a line nearer the center line than either of these, 
and that the arch is stable. The writer therefore believes the statement to be true that if' 
any line of'resi.stance (that is a line of thrust) can he dt-awn n'ithh the arch ring the 

urch is strrhle; and if a line of resistance can be drawn within the middle third, the true 
one will also be within the middle third, and there will be compression over the whole 
of every joint (Swain 1927,412). 

Swain is perfectly aware that this way o f  applying Winkler's theorem does not 
give the true line of  thrust. To locate it, it should be  necessary to find the line that 
actually minimizes the sum of  the squares of  the vertical deviations, as Baker re- 
marked polemically. But, Swain replies, 

it is not necessary to do all this. It is only necessary to observe that, starting with the 
inaximuni line and gradually reducing the thrust and raising the point of application in 
the crown, the line will gradually change from the maximum to the minimum line, and 
that surely there will be some linc that will be nearer the center line than either maxi- 
mum or minimum, in order to conclude that if any linc can be drawn in the arch which 
is not at the same time maximum and minimum, the true line will be in the arch arid 
the arch is stable (Swain 1927,414). 

Obviously, Swain continues, 

if it were ncccssary to find accurately the true line, it would be necessary to do what 

Professor Baker says; and of course the stresses at tlie edges of a joint cannot be found 
accurately unless tlie true line is found. But this is unnecessary to judge .rtuhility. The 
stresses can be computed with quitc sufficient accuracy without doing all this. The 
writer considers it a useless expenditure of timc to try to find the true line anyway, 
considering the many uncertainties of the problem, regarding loads, their distribution, 
the material and workmanship, and even the so-called accurate elastic theory itself 
(Swain l927,4 14) 



To conclude, Swain suggests that the stone arch, as well as the plain or rein- 
forced concrete arch, can be studied with complete reliance on the results, if the 
followings are admitted: 

1. The true line of resistance is one lying nearest the center line. 
2. As we pass gradually from the maximum to the minimum line, some line 

is sure to be found which is nearer the center line than either the so-called 
maximum or the minimum. 

3. It is not necessary to compute the stresses at the edges of the joints with 
extreme exactness (Swain 1927, 424). 

It is easy to understand that these three points and of Swain's arguments appear 
somewhat familiar if we look at them from the viewpoint of modern limit analysis. 
Points 1 and 2 state, on the whole, that if we can draw within the arch the lines of 
maximum and minimum thrust, then the arch is stable because, in accordance with 
Winkles's theorem, the true line will also be within the arch. Point 3 clearly asserts 
that we do not need to find the true line of thrust, because the actual stresses 
cannot be computed with exactness. In other words, local strength is of secondary 
importance if global stablity is ascertained. bven though Swain's deductive 
reasoning is based on Winkles's theorem, which is a theorem of elasticity, his 
conclusions are perfectly correct. From our modern point of view, he gives the 
right answer to what Jacques Heyman, after the plastic "revolution" occurred in 
the theory of structures in the 1950s, was to call "Poleni's problem" in one of his 
most convincing paper on the methodology to be assumed in the case of the 
masonry arch (Heynian 1988). As a matter of fact Swain's attitude, despite his 
elastic-oriented education, is totally in tune with the old tradition of studies which 
Heyman himself first brought to light with his pioneering work on the limit 
analysis of the stone skeleton (Heyman 1966). 

There is no need here to q~lote Heyman's well-known theoretical studies on 
the matter. It is sufficient to say that the mark left by these studies was indeed 
profound. Proof of this is found, on one hand, by the constant references made to 
them in the technical literature, and on the other hand, by the numerous transla- 
tions and reproductions of his worlts in recent years. But this is not all. To Hey- 
man goes the credit for having promoted a new research methodology that is still 
today largely outside the mainstream of the interests of the structural engineer. 
We are speaking of that line of research aiming at a critical reconstruction of the 
historical development of the structural disciplines by rereading the sources and 
cornparing them with ideas, methods and knowledge of the present time, the 
same line of historical research pursued from the 1960s by Clifford Truesdell in 
the context of the mechanics of solids and materials and later followed by Edoar- 
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do Benvenuto and Salvatore di Pasquale in the field of structural mechanics. It is 
to these masters that the present paper intends to render homage. 

Basic features for the collapse analysis of the masonry arch 

Before discussing in some detail the principal eighteenth- and nineteenth-century 
contributions on the theory of the stone arch, we give here a brief presentation of 
the stability and collapse conditions of the arch modelled in accordance with 
Heyman's three well known hypotheses concerning masonry behaviour, that is: 
1) masonry has no tensile strength; 2) masonry has an infinite compressive 
strength; 3) sliding failure cannot occur. 

Figure 1 
Collapse Mode I in its general form and corresponding ltinematical chain 

Figure 2 
Collapse Mode I1 in its general form and corresponding kinematical chai 
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For the sake of simplicity, let us consider a symmetric arch of constant thick- 
ness s subject to a symmetric load. Two opposite rotational collapse modes with 
one degree of freedom may occur. Their general form is shown in figures 1 and 2 
with the corresponding kinematic chain. 

The angle 4, has been introduced in order to define the application point of 
the t h s t  H at the crown joint. In particular, if 4, = 4, = 0 we find the two "usual" 
modes with hinge at the extrados or at the intrados of the crown joint, respective- 
ly (Figs. 3 and 4). 

Figure 3 
Collapse Mode I in the case of hinge at the crown extrados 

Figure 4 
Collapse Mode I1 in the case of hinge at the crown intrados 
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The collapse analysis can be developed in terms of equilibrium equations or 
in terms of principle of virtual work. Whatever the approach, the collapse condi- 
tion is the only one which is, at once, both statically and kinematically admissible 
with respect to a chosen collapse parameter, for instance the thickness of the 
arch. 

Collapse analysis in fevrns o f  eqt~ilibriunz equations 

Let us consider a symmetric arch under a symmetric load and call H:;,,, (4, @o, S )  

and H:,,, (4, qo, S) the values of horizontal thrust applied at a generic point of the 
crown for the equilibrium of a half arch about the intrados M and the extrados N 
of the joint at angle 4, respectively (Fig. 5). Given @,, and S, the first is a mini- 
mum, the latter a maximum. 

Figure 5 

In order to avoid rotation about the intrados edge of any joint of the arch it 
must be 

In order to avoid rotation about the extrados edge of any joint of the arch it 
must be 

H S min Hkdx (2) 
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so that the necessary and sufficient condition for the equilibrium of the arch is 

max H ;  ,,,,, 5 H  5 rnin H :  ,,a, 

The necessary condition of collapse then becomes 

max H;,,,, = min H,,ax (statically admissible thrust) (4) 

where rnax H; ,,,,, = H ;  ,,,,, (gll) = and mm H: = H :  (Q,) = H :  (Qr) f o ~  Mode 1 
and min H :  = H: (g,) = and max H ;  ,,,, = H ;  (Q,) = H ;  ,,,, (@& for Mode 11. 

Condition (4) is also suffic~ent if the angles 4 ,, 4 ,, and 4 , satisfy the dire- 
q~talities 

4, < g,, < 4, (ltinematically admissible mechanism). (5) 

For thrust applied at the crown extrados (Mode I for 4 ,  = @, = 0) (5) and (6) 
become 

max H,:, = min H,;dx (7 )  

and 

where rnax H:,:,, = H,;,, (Qn) and min H,;a, = H& (gr). Similarly, for thrust 
applied at the crown intrados (Mode I1 for g,, =g, = O), (5) and (6) become 

max H:;,,, = min H''a, (9) 

where max = H'',,, (QE) and min H'l, = H:,:,, 
The previous analysis obviously admits a derivation in terms of line of thrust 

as well. Let us define first in a general way the properties of the so-called lines 
of minimum and maximum thrust for a symmetrical arch. 

The line of minimum thrust is the steepest one possible within the arch ring, 
i. e., the most extended vertically and contracted horizontally; it necessarily 
touches the extrados at two symmetric points e near the crown (or at the extrados 
of the crown) and the intrados at two symmetric points i near the springings (or 
at the springings) (Fig. 6 a); 
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The line of ~naximum thrust is the flattest one possible within the arch ring, 
i .  e., the most contracted vertically and extended horizontally; it necessarily 
touches the intrados at two symmetric points i near the crown (or at the intrados 
of the crown) and the extrados at two syrnmctric points e near the springings 
(usually at the springings) (Fig. 6 b); 

Figure 6 
General form of the lines of minimum and maximum thrust for a symmetric arch 

In terms of line of thrust, the collapse condition states that the arch fails only 
if the the lines of maximum and minimum thrust coincide, that is if only one line 
is possible and fulfils the condition for both maximum and minimum thrust. 

Collapse analysis in terms ofpvinciple ofvirtuul w o ~ k  

For rotational collapse modes the virtual work involves only the actives forces 
and is a function of the type 6L(4 (g,, g,, g,], S). Obviously, the work function de- 
pends on the type of collapse mode, so that a function 6Ly' for Mode I and a 
function 6Lj;" for Mode I1 must be defined. If, for a given thickness and for any 
compatible mechanisms, it is 

dL(4 c 0 (11) 
then the equilibrium is stable and collapse cannot occur. The collapse condition 
requires 
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so that the collapse thickness can be determined by means of thc two following 
theorems: 

Static theorem: Among the sct of the statically admissible states, the collapse 
thickness is the minimum thickness for which a kinematically admissible mecha- 
nism exists; 

Kinematic theorem: Among the set of thc kinematically admissible mecha- 
nisms, the collapse thickness is the maximum thickness for which a statically ad- 
missible state exists 

Discussion of the principal pre-elastic historical theories on the collapse of 
the arch 

In the section that follows a selection of historical works on the collapse of the 
arch is critically discussed and compared with the previous results. This selection 
inevitably neglects other important studies for which we refer to the bibliogra- 
phics contained in recent works on the matter (Foce 2002, Kurrer 2002, Huerta 
2004). However, it collects the main contributions to a general formulation of the 
collapse analysis of the arch from the point of view of the modern limit analysis 
based on Heyman's hypotheses. In this sense, our review of the historical sources 
will be exclusively focused on the rotational collapse modes, even though some 
of them take into account also sliding collapse modes in the presence of friction. 

Coulomb (1 773) 

Coulomb's analysis in terms of method of maxima and minima is probably the 
first attempt at a general formulation of the collapse of symmetric arches. 
Supposing the thrust to be applied at a generic point of the crown and considering 
the rotational equilibriun~ of a voussoir, Coulomb correctly finds the necessary 
and sufficient condition of equilibrium (3). In the Renzuque I of his Essui he adds 
that the horizontal thrust must act at the crown extrados "pour rendre la force B, 
[max H:,,,,, with our notations] aussi petite qu'elle puisse etre" (Coulomb 1776, 
380), so that he takes max H;,,,, max H:;,(;n. Nothing is said, however, about the 
application point of the thrust in order to compute the other extreme value min 
H:,,, and, consequently, to define the range of admissible thrusts. Two 
interpretations can be given of Coulomb's tcxt: 1) hc implicitly understands that 
the min H,,a, must be found with the thrust applied again at the crown extrados: 
in this case it should be min Hkan = min H "  nias7 . 2) he implicitly supposes that the 
min Hilax must be found with the thrust applied at the crown intrados, in order to 
take the greatest value of min in this case it should be min H:llax = min H&. 

According to the first interpretation, Coulomb would give only (7) ,  disregarding 
(8). The analysis of the rotational modes is correct as far as Mode I, but not 
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complete in that Mode 11 is not considered. According to the second interpreta- 
tlon, which is the one usually assumed by the exegets of Coulomb's Essai, the 
equilibrium condition would be 

niax H,,:,l 5 H 5 min H:,,;,, (13) 

If the range of thrust shrinks to a single value we have 

max H,;,l = min 

Now, this equality cannot be the necessary condition of collapse because the 
two extreme values of the thrust are computed taking two different points of 
application at the crown joint. No rotational mode can occur, unless the crown 
joint is reduced to a single point, because only in this circumstance there would 
be no distinction between extrados and intrados. In this case the analysis of the 
rotational modes is incorrect, as pointed out by Persy (1 825). 

Lorenzo Mascheroni is one of the few authors to have dealt with the equilibrium 
of the arch in terms of' principle of virtual work. Before him a significant 
application of this principle to structural problems was given in 1743 by the "tre 
mattematici" in the known Pmwe on the stability of Saint Peter's dome. During 
the nineteenth century this approach was only occasionally adopted and always 
without general purposes, for instance by Navier in a note to Gauthey's Trait& de 
la construction des ponts (Gauthey 1 809, l ,  3 18-320) and by Lambel ( 1822) in a 
memoir on the stability of arches and retaining walls. On the contrary, in 
Mascheroni's Nz~ove vicerehe the principle of virtual work assumes a central role 
and is used progran~matically for the equilibrium analysis of rigid systems with 
one degree of freedom. 

In this sense Mascheroni's contribution ideally belongs to the old tradition of 
the "science of weights" of Aristotelian origin, according to which, as pointed 
out by Sinopoli (2002, 2003), the equilibrium condition of the "simple ma- 
chines" --real mechanisms subject to w e i g h t s  was intended as a condition of 
non-activated motion by stating that the work of those weights must be zero for a 
(virtual) vertical displacement of their center of mass. Under this point of view, 
when an arch fails and transforms into a mechanism, it becomes a particular 
"machine" whose equilibrium condition can be derived by means of the principle 
of virtual work. As this "machine" is formed by a certain number of voussoirs that 
have absolute and relative (infinitesimal) movements, the great difficulty consists 
in correctly describing these movements in order to apply the principle. 
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Mascheroni's theoretical contribution mainly concerns the solution of this 
kineniatical problem. He first gives a general discussion of the infinitesimal dis- 
placement of a segment, then demonstrates ltinernatical theorems that are finally 
applied to solve the problem of the Eyuilihrio de' Rettilinei, that is of systems 
with one degree of freedom formed by rigid bars connected with hinges and sub- 
ject to weights. On this general basis the problem of the arch is easely solved 
since, at collapse, the vertical dislacements of the voussoirs coincide with those 
of the bars connecting the hinges about which the voussoirs move. If G and Q are 
the centers of mass of the voussoirs or of the bars (Fig. 7), from the principle of 
virtual work Mascheroni derives the equilibrium condition for the modes I and I1 
(Mascheroni 1785,25) 

which can represent both &L?) = 0 and 6Lj;" = 0 provided that we invert the posi- 
tion of the hinges at the intrados and extrados lines. 

Monasterio (ca. l CIOCI) 

For the theory of the arch the unpublished manuscript Nzlevu te6rica sobrv el ein- 
p j e  de b6vedas by the Spanish engineer Joaquin Monasterio is noteworthy for 
several reasons, as recently shown (Huerta and Foce 2003). Tackling the problem 
of the arch with a quite general approach, Monasterio first develops an original 
way of deriving the kinematically admissible mechanisms by observing that, 
when an arch fails, the voussoirs have movements of rotation and translation 
characteristic of thc various collapse modes. Thus, by defining I. and t as the rota- 
tions and translations of the voussoirs, Monasterio describes the collapse modes 
by means of proper sequences of the letters r and t,  (proper in the sense that they 
correspond to admissible mechanisms). The number of letters gives the number 
of voussoirs in which the arch breaks at collapse; the order of letters, from left to 
right, indicates the types of movement to which the voussoirs are subject. Monas- 
terio applies this procedure to non-symmetrical arches and finds seven collapse 
mechanisms with one dcgrcc of frccdom. They arc describcd by thc sequences tt, 
rrr, rrt, t r ~ ,  tr, rt, trt and shown if figures 1-7 of his plate 1, where the two se- 
quences h and rt are collapse modes with a composed movement of rotation and 
translation at a certain joint (Fig. 8). 

Monasterio's approach to the kinematics of the arch is new and promising in- 
deed. However, his results are not fully satisfactory, as can be shown by a different 
way of forming the sequences. Let us identify as R, T and RT the joints (not the 
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Figure 7 
Sketches of the arches with the rettilinei for the analysis of Modes I and I1 (from 
Mascheroni 1785) 

Figure 8 
Monasterio's Plate 1 with the non-symmetric and symmetric collapse modes 
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voussoirs) where absolute and relative rotations, translations and roto-transla- 
tions take place, so that the number of letters gives the number of rupture joints, 
and this number minus one gives the number of voussoirs at collapse. Through 
this choice it is easy to see that Monasterio's list is not complete because the rota- 
tion r- or the translation t of a voussoir may derive from different types of ab- 
solute or relative movements R, T and RT at the rupture joints. As a matter of 
fact, there are twenty-three non-symmetrical collapse modes with one degree of 
freedom, represented by the following fourteen sequences, some of which stand 
for two opposite modes (Perazzo 2005): 

T-TT (corresponding to the sequence tt, figure 1 of Monasterio's plate 1) 
T-R-R-T (corresponding to trt, figures 7 of plate 1) 
T-T-R-R (two opposite modes) 
R-R-R-T (two opposite modes) (valid fot both rrt and trr figure 3 and figure4 

of plate 1) 
R-R-R-R (corresponding to rrr, figure 2 of plate 1) 
R-T-T-R 
R-T-R-R (two opposite modes) 
T-R-T-R (two opposite modes) 
R-RT-R (two opposite modes) 
RT-T-R (two opposite modes) 
RT-R-R (two opposite modes) 
RT-R-T (two opposite modes) 
R-RT-T (two opposite modes) (valid for both ti* and rt, figures 5 and 6 of plate 1) 
RT-RT 

For the symmetrical arch Monasterio does not write the sequences but pro- 
vides the eight collapse modes drawn at the bottom of his plate 1.  This number 
can rise to twelve if we consider that the modes of figures 12, 13, 14, 15, with 
two symmetrical hinges near the crown, may include four collapse modes with a 
single hinge at the extrados or intrados of the crown. Also in this case, however, 
Monasterio's list is not complete because there are twenty symmetrical modes 
with one degree of freedom, given by the following ten sequences representing 
two opposite modes (Perazzo 2005). 

R-R-R-R-R (two opposite modes included in the modes of figures 12 and 13 
of plate 1) 

T-R-R-R-T (two opposite modes included in the modes of figures 14 and 15) 
T-T-T-T(corresponding to figures 10 and 11) 
R-T-R-TR 
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R-RT-RT-R (corresponding to figures 16 and 17) 
RT-R-R-RT 
RT-R-RT 
R-R-R-R-R-R (corresponding to figures 12 and 13) 
T-R-R-R-R-T (corresponding to figures 14 and 15) 
R-T-R-R-T-R 

A second relevant feature of Monasterio's memoir comes from the fact that 
he tackles the stability analysis starting with the non-symmetrical arch and 
then adapting it to the special case of the symmetrical arch. Further, the way of 
deriving the collapse stability is proof of the originality of his analysis. For instance, 
the condition for the activation of the non-symmetrical mode rrr (R-R-R-R with 
our notation) is obtained by imposing necessary static requirements, that is 
(Fig. 9): 

l )  the right component of the weight must go through the intrados edge C, 
2) the left component of the weight must go through the extrados edge B; 
3) the moment of the left component o f ,  with respect to the intrados edge A 

must be lower than the moment of the weight with respect to the same point; 
4) the moment of the right component of with respect to the extrados edge 

D must be greater than the moment of the weight with respect to the 
same point. 

Figure 9 
Monasterio's analysis of the rotational collapse mode of a non-symmetric arch (rcdrawn 
from Monasterio) 
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By treating these conditions Monasterio arrives at a stability disequality 
which he adapts to the symmetric arch. Thus, by taking the origin of the axes at 
the crown intrados, he correctly finds that collapse Mode I of figure 10 a cannot 
occur if (in our notations) 

and, similarly, that collapse Mode I1 of figure lob cannot occur if 

Now, the two terms in (15) and in (1 6) are nothing other than the thrusts q,& 
and H:" and the thrusts HER, and H;,,, respectively. Thus by searching for the mini- 
mum of the first terms of (15) and (16) and the maximum of the latter ones we 
obtain two stability disequalities which become (7) and (9) in the case of limit 
equilibrium. 

Monasterio uses (1 5) for the semicircular arch of constant thickness under its 
own weight. By trial and error he finds that the minimum thickness is between 
118 = 0.125 and 118 = 0.11 1 of the intrados radius and the rupture joint at the 
haunches is between 54" and 56" from the crown. This result is quantitatively 
correct and agrees with the calculation by Petit (1835), who gave 0.1 14. Mi- 

Figure 10 
Monasterio's analysis of stability of a symmetric arch with respect to Modes 1 and I1 
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lankovitch (1 907) obtained the rigorous value 0.1136 corresponding to the rup- 
ture joint at 54O29' from the crown. 

The contributions by Persy, Navies and Michon on the collapse of the arch are di- 
rectly connected with Coulomb's method of maxima and minima and represent 
an important theoretical improvement of Coulon~b's results. Other authors, both 
beforc and after them, have taken Coulomb's mcthod as a point of departure, 
even though with less general purposes. In this sense we can cite the works of 
Berard (1810), Audoy (1820), Lame and Clapeyron (1823), and the "special 
issue" of the Minzwial de l 'Officier du Ginie of 1835, where three long memoirs 
are devoted to particular applications of the method (Garidel and Petit) and to a 
graphic calculation of the extreme values of the thrust (Poncelet). 

Persy's treatment of the matter is particularly enlightening because he inten- 
tionally starts from Coulon~b's analysis to point out its deficiency regarding the 
point of application of the thrust at the crown joint. He initially considers thc 
thrust applied at a generic point of the crown and finds the two extreme values 
max Hn,,,, and min H,,,x, to which he associates the joints J and j ,  respectively. To 
conceive a kinematically admissible mechanism when the necessary condition of 
collapse max H:,,, = min Hnaxis attained, he admits for a moment that the thick- 
ness at the crown shrinks to a single point and concludes that if the joint J is 
higher thanj, the collapse mode of figure1 l a  may occur and conversely, if the 
joint J is lower than j, the collapse mode of figure 11 (b) may occur. 

Figure 1 1  
Persy's two rotational collapse iiiodcs in the hypothetical case of a point contact at the 
crown joint 



Bearing in mind the two opposite rotational modes shown in figure 3 and 
figure 4 with a hinge at the crown, Persy observes that when the crown joint has 
a finite thickness, the point of application of the thrust may assume two limit 
positions corresponding to the crown extrados and the crown intrados. Thus, to 
obtain the collapse mode 1 of figure 3, with thrust at the crown extrados, he 
defines the new extreme values max H;,, and min and concludes that mode 
I may occur when max H;:,, = lnin H';;3x under the kinematical condition that the 
joint corresponding to rnax H'& is higher than the joint corresponding to H'',; 
conversely, to obtain the collapse mode I1 of figure 4, with thrust at the crown 
intrados, he defines the new extreme values max H:;:,, and min H:;;',x and 
concludes that the mode I1 may occur when max H;,:, = min H;ax under the 
condition that the joint corresponding to max H';;ill is lower than the joint 
corresponding to min H";dx. 

Persy's analysis is correct in so far as collapse modes 1 and I1 shown in 
figure 3 and figure 4 are concerned. In this sense, Persy clarifies Coulomb's 
discussion since he introduces two pairs of extremes values of the thrust 
corresponding to the application point at the crown extrados and intrados and 
gives the collapse conditions (7) and (8) for mode I and (9) and (10) for mode 11. 
These results were obtained independently by Navier (1826) and received a clear 
exposition in a later work by Michon (1 857). Nevertheless they do not complete- 
ly solve the collapse analysis of the symmetrical arch as they cannot include the 
general form of the rotational modes shown in figure1 and figure 2. 

The progress of the studies on the elasticity and strength of materials during the 
f~rs t  decades of the ninteteenth century had an indirect influence on the theory of 
the arch as well. Starting from the 1839s, the traditional approach in terms of 
collapse analysis soon appeared out of date in the face of new questions 
concerning the actual stresses wlthin the arch and, for at least forty years, the 
problem of finding the "true" line of thrust seriously troubled the minds of 
generations of scholars before the elastic approach was recognized and accepted 
as the only rational way out. During these forty years many methods were 
proposed in order to remove the statical indetermination of the problem on the 
basis of arbitrarious assumptions regarding the pomt of appl~cation of the thrust 
at the crown or by means of metaphysical principles concerning the features of the 
actual line of thrust. The tragicomical result was what the Italian elastician 
Francesco Crotti denounced as a dizziness of the minds in a noteworthy Esame 
critic0 (Crotti 1875) written in reaction to the nth attempt at solving the problem 
by means of a yriori hypotheses. 
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In this contradictory phase of the theory of the arch an important contribution 
was made in 1867 by Alfred Durand-Claye with the method of the areas of 
stability (Foce and Aita 2003). Durand-Claye was perfectly aware that the true 
thrust line of a stable arch is statically indeterminate. Thus, instead of searching 
for the "actual" thrust line, he elaborates a general method for determining all the 
admissible thrust lines which fulfil1 the equilibrium equations (with respect also 
to the strength of materials): in the case of a stable arch the true one will 
necessarily be included. As Durand-Claye himself writes, "de la possibilitk de 
l'equilibre, nous concluons a la stabiliti." (Durand-Claye 1867, 65). 

Briefly, and taking into account only the part of the method dealing with the 
rotational equilibrium, Durand-Claye considers a voussoir of a symmetric arch 
and writes the equations of the thrusts and Hnax, that is 

and 

where the vertical distance y is the independent variable defining the point of 
application of the thrust at the vertical joint and the differences of the coordinates 
are the lever arms of weight and thrust with respect to the intrados M and the ex- 
trados N of the joint at angle @ (Fig. 12 a). In the plane Hy these equations repre- 
sent two equilateral hyperbolas with a common vertical asymptote coinciding 
with the line of the crown joint and with horizontal asymptotes given by the 
straight lines through the intrados M and the extrados N of the joint, respectively. 
Given $I, the admissible values of the crown thrust are graphically represented by 
the area bounded by the two hyperbolas and the two horizontal straight lines 
starting tiom the extrados and intrados edge of the crown joint. Now, by drawing 
the hyperbolas (17) and (18) for each joint of the arch and taking the common 
area to all the areas previously defined, Durand-Claye obtains the so-called area 
oj'stability, which in the plane Hy is the locus of the points representing the ad- 
missible values of the thrust and their point of application at the crown for the ro- 
tational equilibrium of the whole arch (Fig. 12 b). 

If, for a certain value of the thickness, the area of stability shrinks to a point, 
then the collapse condition is attained since a unique admissible thrust exists 
and, at the same time, a certain collapse mode becomes kinematically 
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admissible, with hinges located at the intrados or extrados of the joints 
corresponding to the intersecting hyperbolas. This case is shown in figure 13 (a) 
and corresponds to the collapse Mode I of a semicircular arch subject to its own 
weight and bearing a horizontal fill with the same specific weight as the arch, 

y 4 stability area 

Figure 12 
Area of the admissible thrusts for the rotational equilibrium of a generic voussoir (a) and 
area of stability for the whole arch (b) 

Figure 13 
Collapse condition according to Durand-Claye's method (a) and corresponding collapse 
mode (b) 
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with thickness s = 0 . 0 4 8 1 ~  and hinges at 4, 28", 4, - 67" and at the springing 
(Fig. 13 b). 

Our interest in Scheffler's work concerns his study of the geometrical properties 
of the lines of maximum and minimum thrust, probably the first general analysis 
considering both symmetrical and non-symmetrical arches. Scheffler clearly 
recognizes that, for a stable arch, the statically admissible thrust lines are bounded 
by two limit lines corresponding to the minimum and maximum value of the 
horizontal thrust H and that the limit condition of equilibrium is attained when a 
line of thrust can be draw within the arch ring which has, at once, the property of 
the minimum and maximum thrust (Scheffler 1857, 48). 

As far as the line of minimum thrust, Scheffler considers the thrust line 
through the extrados of the crown joint and the intrados of the springing and 
asserts that: 

If this line lies within the arch ring, then it is the line of minimum thrust 
(Fig. 14 a); 
If this line cuts the intrados, but not the extrados, then the line of mini- 
mum thrust goea through Lhe extrados of the crown and touches the intra- 
dos at a certain point near the springing (Fig. 14 b); 
If this line cuts the extrados, but not the intrados, then the line of mini- 
mum thrust touches the extrados at a certain point (starting from a point 
internal to the crown joint) and goes through the intrados of the springing 
(Fig. 14 c); 
If this line cuts both the extrados and intrados, then the line of minimum 
thrust touches the intrados at a certain point (starting fiom a point inter- 
nal to the crown joint) and touches the intrados at a certain point near the 
springing (Fig. 14 d); 

Similarly, for the line of maximum thrust Scheffler considers the thrust line 
through the intrados of the crown joint and the extrados of the springing and 
asserts that: 

1) If this line lies within the arch ring, then it is the line of maximum thrust 
(Fig. 15 a); 

2) If this line cuts the intrados, but not the extrados, then the line of maximum 
thrust touches the intrados at a certain point (starting from a point internal to 
the crown joint) and goes through the extrados of the springing (Fig. 15 b); 
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Figure 14 
Possible positions of the line of minimum thrust (redrawn from Scheffler 1857) 

If this line cuts the extrados, but not the intrados, then the line of maxi- 
mum thrust goes through the intrados of the crown and touches the extra- 
dos at a certain point over the springing (Fig. 15 c); 
If this line cuts both the extrados and intrados, then the line of maximum 
thrust touches the intrados at a certain point (starting from a point internal 
to the crown joint) and the extrados at a certain point near the springing 
(Fig. 15 d); 

The previous discussion was given also by Ceradini (1 873), who extended 
Scheffler's analysis on the basis of the following general statement: if two lines 
of thrust intersect, their points of intersection lie on the straight line connecting 
the point of intersection E of the two reactive systems at the left springing with 
the point of intersection F of the two reactive systems at the right springing 
(Fig. 16). 

This statement is a direct consequence of the construction of two funicular 
polygons for the same external load. On its basis Ceradini shows all the possible 
relative positions of the thrust lines corresponding to different reactive systems 
and demonstrates the properties of the lines of maximum and minimum thrust for 

Figure 15 
Possible positions of the line of maximum thrust (redrawn from Scheffler 1857) 
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0 1  

Figure 16 
Ceradini's statement on the lines of thrust and the corresponding reactive systems (from 
Ceradini 1873) 

a non-symmetrical arch under a vertical load. In particular, the line of minimum 
thrust necessarily touches the extrados at one point e and the extrados at two 
points i as in figure 17 (a), while the line of maximum thrust necessarily touches 
the intrados at one point i and the extrados at two points e as in figure 17 (b). 

If a line of thrust has two points of contact with the extrados and two points of 
contact with the intrados located as in figure 18, it has the features of both the 
lines of maximum and minimum thrust and then it is the only statically admissi- 
ble line. 

Moreover, Ceradini shows that the same properties hold if the resultant of the 
external load is not vertical, with the difference that they refer to the component 
of the reaclive systems which acts perpendicularly to that resultant (Ceradini 
1887). 

Conclusions 

In Swain's treatise of 1927 no mention is made of the authors quoted above and is 
probable that their contributions were rather extraneous to his scientific training. In 
spite of that, it is not difficult to recognize a deep convergence between his 
approach and the results of the pre-elastic studies that we have discussed in the 
previous section. As a matter of fact, Swain's peroration in favour of a "weighted" 
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Figure 17 
Lines of minimum and maximum thrust for a non-symmetrical arch (from Ceradini 1873) 

Figure 18 
Line of minimum and maximum thrust for a non-symmetrical arch (from Ceradini 1873) 

use of the elastic methods for the analysis of the masonry arch has the value of a 
methodological choice whose last consequences lead to the structural philosophy 
of limit analysis that, after Heyman's lesson, is nowadays considered as the basis 
for the study of the stone skeleton. In this sense, also the lesson from history 
should be carefully attended. 
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